Development of the upper reaches of erosion systems in the Russian plain in the area of the Moscow glaciation
https://doi.org/10.71367/3034-4638-2024-1-1-35-58
Abstract
The headwaters of the river systems on the East European Plain between the boundaries of the Late Valdai (Marine Isotope Stage 2 – MIS 2) and the Moscow (MIS 6) glaciations developed during the last 150,000 years. During this time, there were at least three climatic episodes characterised by very high relative to modern surface runoff causing intense deep and backward erosion: at the end of MIS 6, in the second half of MIS 2 and in the middle Holocene. Watersheds cut by erosion systems have a mosaic geological structure, from hard-erodible glacial tills (moraines) to low-resistance sandy deposits. In moraines, the main deepening of erosional forms occurred in pre-Holocene time. Even relatively large forms such as balkas (dry valleys) have not yet reached concave longitudinal profiles. The general trend of their development was deepening. Short episodes of incision, occurring during climatic intervals with increased water flow, alternated with long periods of stabilisation. In the Holocene, the largest erosion events associated with episodes of anomalous intensity of atmospheric precipitation (probably heavy rainfall) are dated to the time interval from 6 to 3 thousand years ago. In different parts of this interval, single gullies appeared in areas with sufficiently high gradients and sandy substrates. These gullies quickly reached their ultimate size and now have graded concave longitudinal profiles. All other gullies cutting through moraines and bedrock were formed in pre-Holocene time, but are still far from being graded and have convex, convex-concave and stepped longitudinal profiles. The diversity of catchment areas, initial slope gradients, and properties of the geological substrate that determine its resistance to erosion has led to great differences in the evolution of the upper reaches of river systems within the Moscow glaciation area compared to the more homogeneous landscape conditions of the extra-glacial areas of the Russia Plain.
Keywords
About the Authors
A. V. PaninRussian Federation
Moscow
A. Yu. Sidorchuk
Russian Federation
Moscow
O. K. Borisova
Russian Federation
Moscow
V. R. Belyaev
Russian Federation
Moscow
Y. R. Belyaev
Russian Federation
Moscow
M. V. Vlasov
Russian Federation
Moscow
E. A. Eremenko
Russian Federation
Moscow
Y. N. Fuseina
Russian Federation
Moscow
E. D. Sheremetskaya
Russian Federation
Moscow
References
1. Antonov S.I., Gunova V.S., Rychagov G.I., Sudakova N.G. (2019) Development of the Protva River valley in the late Neopleistocene. Vestnik Mosk. Ser. 5. Geografia. No. 4. P. 88-99. (in Russ.)
2. Aseev A.A., Dedkov A.P. Climate change and relief development. In: Klimat, rel’yef i deyatel’nost’ cheloveka. Moscow: Nauka. 1981. P. 118-128. (in Russ.)
3. Astakhov V. (2011) Ice Margins of Northern Russia Revisited. Ice Margins of Northern Russia Revisited. In: Developments in Quaternary Science. Vol. 15. Quaternary Glaciations – Extent and Chronology. A Closer Look. Ehlers J., Gibbard P.L., Hughes P.D. (Eds.). Elsevier: Amsterdam. Р. 323–336. doi: 10.1016/B978-0-444-53447-7.00025-8
4. Basalikas F.B., Shviadas K.I. (1981) Phase of periglacial transformation of relief of lake-free hilly-marine uplands (on the example of Myadininka upland and Eishisha plateau of Lithuanian SSR. In: Klimat, rel’yef i deyatel’nost’ cheloveka. Moscow: Nauka. P. 155-163. (in Russ.)
5. Belyaev Y.R., Grigorieva T.M., Sycheva S.A., Sheremetskaya E.D. (2008) Development of the basalic headwaters of the centre of the Central Russian Upland in the late Middle – Late Pleistocene. Geomorfologiya. No. 1. P. 43-55. doi: 10.15356/0435-4281-2008-1-43-55 (in Russ.)
6. Borisova O.K., Novenko E.Yu., Velichko A.A., Kremenetski K.V., Junge F.W., Boettger T. (2007) Vegetation and climate changes during the Eemian and Early Weichselian in the Upper Volga region (Russia). Quat. Sci. Rev. Vol. 26. Р. 2574–2585. doi: 10.1016/j.quascirev.2007.07.001
7. Butakov G.P. (1986) Plejstocenovyj periglyacial na vostoke Russkoj ravniny (Pleistocene Periglacial in the East of the Russian Plain). Kazan Univ. Press. 143 pp. (in Russ.)
8. Butakov G.P., Ermolaev O.P., Mozzherin V.I. et al. (1991) Forms of manifestation of erosion-accumulative processes on small river catchments. In: Erozionnyye i ruslovyye processy. Lutsk: Lutsk Pedagogical Institute. P. 19-42. (in Russ.)
9. Curry B.B., Baker R.G. (2000) Palaeohydrology, vegetation, and climate since the late Illinois Episode (~130 ka) in south-central Illinois. Palaeogeogr. Palaeoclim. Palaeoecol. Vol. 155. Р. 59–81. doi: 10.1016/S0031-0182(99)00094-2
10. Dedkov A.P. (1975) To the question of slope accumulation in periglacial conditions of the Pleistocene. In: Paleogeografiya i periglyacial’nyye yavleniya Pleistocena. Moscow: Nauka. С. 57-58. (in Russ.)
11. Eremenko E.A., Karevskaya I.A., Panin A.V. (2010) Post-glacial transformation of fluvioglacial troughs in the marginal zone of the Moscow glaciation. Izv. RAS. Ser. geogr. no. 2. С. 56-70.
12. Gardiner V. (1995) Channel networks: progress in the study of spatial and temporal variations of drainage density. In: Changing river channels. Gurnell A., Petts G. (Eds.). Wiley: Chichester. Р. 65–85.
13. Grichuk V.P. (1961) Fossil floras as a palaeontological basis for the stratigraphy of Quaternary deposits. In: Rel’yef i stratigrafiya chetvertichnyh otlozhenij severo-zapada Russkoj ravniny. Moscow: Nauka. P. 25-71. (in Russ.)
14. Kaiser K., Loenz S., Germer S. et al. (2012) Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact – an overview. J. Quat. Sci. Vol. 61, Р. 103-132. doi: 10.3285/eg.61.2.01
15. Karabanov A.K., Matveyev A.V. (2011) The Pleistocene Glaciations in Belarus. In: Developments in Quaternary Science. Vol. 15. Quaternary Glaciations – Extent and Chronology. A Closer Look. Ehlers J., Gibbard P.L., Hughes P.D. (Eds.). Elsevier: Amsterdam. Р. 29–35. doi: 10.1016/B978-0-444-53447-7.00003-9
16. Karagodina M.V., Voskresensky I.S., Sidorchuk A.Y. (1970) Geomorphological sketch of the basin of the middle course of the Protva River. Vestn. Mosk. Univ. Ser. 5. Geogr. No. 6. P. 93-96. (in Russ.)
17. Karta chetvertichnyh obrazovanij masshtaba 1:2500000 territorii Rossijskoj Federacii. Poyasnitel’naya zapiska (Map of Quaternary formations at a scale of 1:2500000 of the territory of the Russian Federation. Explanatory note) (2010). SPb: VSEGEI. 220 pp. (in Russ.)
18. Kashkin A.V., Krasnov Y.A., Massalitina G.A. et al. (2006) Arheologicheskaya karta Rossii. Kaluzhskaya oblast’ (Archaeological map of Russia. Kaluga Region). Moscow: Institute of Archaeology RAS. 310 pp. (in Russ.)
19. Kerney M.P., Brown E.H., Chandler T.J. (1963) The late-glacial and post-glacial history of the chalk escarpment near Brook, Kent. Philosoph. Transact. Royal Society London. Ser. B. Vol. 248. Р. 135–204. doi: 10.1098/rstb.1964.0010
20. Khrutsky S.V., Kostsova E.V. (1981) Varieties of slopes depending on their formation in interglacial and periglacial conditions. Klimat, rel’yef i deyatel’nost’ cheloveka. Moscow: Nauka. 1981. P. 148-155.
21. Khrutsky S.V., Semyonov O.P., Kostsova E.V. (1998a) Relief formation processes in Pleistocene periglacials and modern forms of erosional relief. In: Geomorfologiya. No. 3. P. 104-108.
22. Khrutsky S.V., Semyonov O.P., Kostsova E.V. (1998b) Forms of the primary hydrographic network, their genesis and typification problems. Geomorfologiya. No. 4. P. 85-91.
23. Khrutsky, S.V. (1985) Problems of gully formation in relation to Pleistocene climate changes. Geomorfologiya. No. 1. С. 17-22.
24. Kukla G.J., Bender M.L., de Beaulieu J.L. et al. Last interglacial climates (2002) Quat. Res. Vol. 58. Р. 2–13. doi: 10.1006/qres.2001.2316
25. Lahousse P., Pierre G., Salvador P.G. (2003) Contribution à la connaissance des vallons élémentaires du Nord de la France: l’exemple de la creuse des Fossés (Authieule, Plateau Picard). Quaternaire. Vol. 14. Р. 189–196.
26. Langohr R., Sanders J. (1985) The Belgium Loess belt in the last 20,000 years: evolution of soils and relief in the Zonien Forest. In: Soils and Quaternary Landscape Evolution. Boardman J. (Ed.). Wiley: Chichester. Р. 359–371.
27. Larue J.P. (2005) The status of ravine-like incisions in the dry valleys of the Pays de Thelle (Paris basin, France). Geomorphology. 2005. Vol. 68. Р. 242–256. doi: 10.1016/j.geomorph.2004.11.018
28. Lisiecki L.E., Raymo M.E. (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography. Vol. 20. PA1003. doi: 10.1029/2004PA001071.
29. Macklin M.G., Lewin J., Woodward J.C. (2012) The fluvial record of climate change. Phil. Trans. R. Soc. A. Vol. 370. Р. 2143–2172. doi: 10.1098/rsta.2011.0608.
30. Matoshko A.V. (2012) Balkas – a new look at a common landform of the East European Plain, from a Quaternary perspective. Earth Surf. Process. Landforms. Vol. 37. Р. 1489–1500. doi: 10.1002/esp.3255
31. Moskalewicz D., Sokołowski R.J., Fedorowicz S. (2016) River response to climate and sea level changes during the Late Saalian/Early Eemian in northern Poland – a case study of meandering river deposits in the Chłapowo cliff section. Geologos. Vol. 22. Р. 1–14. doi: 10.1515/logos-2016-0001
32. Murton J.B., Bateman M.D., Baker C.A. et al. (2003) The Devensian periglacial record on Thanet, Kent, UK. Permafr. Periglac. Proc.Vol. 14. Р. 217–246. doi: 10.1002/ppp.442
33. Panin A., Adamiec G., Buylaert J.-P. (2017) Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain. Quat. Sci. Rev. Vol. 166. Р. 266–288. doi: 10.1016/j.quaint.2015.04.017.
34. Panin A., Borisova O., Konstantinov E. et al. (2020) The Late Quaternary evolution of the upper reaches of fluvial systems in the southern East European Plain. Quaternary. Vol. 3. Р. 31. doi: 10.3390/quat3040031.
35. Panin A., Matlakhova E. (2015) Fluvial chronology in the East European Plain over the last 20 ka and its palaeohydrological implications. Catena. Vol. 130. Р. 46–61. doi: 10.1016/j.catena.2014.08.016
36. Panin A.V., Adamiec G., Arslanov K.A. et al. (2014) Absolute chronology of fluvial events in the Upper Dnieper river system and its palaeogeographic implications. Geochronometria. Vol. 41. No. 3. Р. 278–293. doi: 10.2478/s13386-013-0154-1
37. Panin A.V., Fuzeina J.N., Belyaev V.R. (2009) Long-term development of Holocene and Pleistocene gullies in the Protva River basin, Central Russia. Geomorphology. Vol. 108. Р. 71–91. doi: 10.1016/j.geomorph.2008.06.017
38. Panin A.V., Matlakhova E.A., Belyaev Y.R. et al. (2011) Sedimentation and terrace formation in river valleys of the centre of the Russian Plain in the second half of the Late Pleistocene. Bull. Komis. po Izuch. Chetv. Per. № 71. P. 47-74. (in Russ.)
39. Panin, A.V. (2017) Development of the gully and gully subsystem of erosion-channel systems in the late Pleistocene-Holocene. In: Erozionno-ruslovyye sistemy. Moscow: INFRA-M. P. 512-527. (in Russ.)
40. Rychagov G.I., Aleshinskaya Z.V., Antonov S.I., Skornyakova L.A. (1989) New sections of the Mikulin deposits of the centre of the Russian Plain. In: Chetvertichnyj period. Stratigrafiya. Moscow: Nauka. P. 35-42. (in Russ.)
41. Rychagov G.I., Antonov S.I. (Eds.). (1992) Kompleksnyj analiz chetvertichnyh otlozhenij Satinskogo uchebnogo poligona (Complex Analysis of Quaternary Sediments of the Satino Training Area). Moscow Univ. Press. 128 pp. (in Russ.)
42. Rychagov G.I., Antonov S.I. (Eds.). (1996) Structure and history of the Protva River valley development (1996) / Edited by. Moscow Univ. Press. 129 pp. (in Russ.)
43. Sidorchuk A., Borisova O., Panin A. (2001) Fluvial response to the late Valdai/Holocene environmental change on the East European Plain. Glob. Planet. Change. Vol. 28. Р. 303–318. doi: 10.1016/S0921-8181(00)00081-3
44. Sidorchuk A.Y., Panin A.V., Borisova O.K. (2009) Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology. Vol. 113. Р. 137–157. doi: 10.1016/j.geomorph.2009.03.007
45. Sidorchuk A.Yu., Ukraintsev V.Yu., Panin A.V. (2021) Estimating Annual Volga Runoff in the Late Glacial Epoch from the Size of River Paleochannels. Water Resources. Vol. 48. No. 6. P. 864–876. doi: 10.1134/S0097807821060178
46. Spiridonov A.I. (1983) On tectonic and climatic factors of river valley development. Vestn. Mosk. Un-ta. Ser. 5. Geogr. No. 5. P. 14-20. (in Russ.)
47. Starkel L., Michczyńska D.J., Gębica P. et al. (2015) Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60–8 ka cal BP). Quat. Int. Vol. 388. Р. 97–118. doi: 10.1016/j.quaint.2015.04.017.
48. Sycheva S., Frechen M., Terhorst B., Sedov S., Khokhlova O. Pedostratigraphy and chronology of the Late Pleistocene for the extra glacial area in the Central Russian Upland (reference section Aleksandrov quarry). Catena. 2020. 194. 104689. doi: 10.1016/j.catena.2020.104689
49. Sycheva S.A. (2005) Evolution of erosion palaeoforms in the climatic cycle ‘glaciation-interglacial’ In: Novyye i tradicionnyye idei v geomorfologii. V Shchukinskiye chteniya. Trudy. Moscow Univ. Press. P. 169-173.
50. Sycheva, S.A. (2003) Evolution of the Moscovian-Valdaian palaeocuts on the watersheds in the Middle Russian Upland. Geomorfologiya. No. 3. P. 76-91. doi: 10.15356/0435-4281-2003-3-76-91
51. Tyuremnov S.N., Vinogradova E.A. (1973) Types of interglacial peat bogs of the Moscow region. Bull. Komis. po Izuch. Chetv. Per. № 40. P. 3-21.
52. Vandenberghe J., Sidorchuk A. Large palaeomeanders in Europe: Distribution, formation process, age, environments and significance. In: Palaeohydrology. Geography of the Physical Environment. Herget, J., Fontana, A., Eds.; Springer Nature: Cham, Switzerland, 2019. Р. 169–186. doi: 10.1007/978-3-030-23315-0_9
53. Veldkamp A., Van den Berg M.W., Van Dijke J.J., et al. (2002) Reconstructing Late Quaternary fluvial process controls in the upper Aller Valley (North Germany) by means of numerical modeling. Netherlands J. Geosci. Vol. 81. Р. 375–388. doi: 10.1017/S0016774600022666
54. Velichko A.A., Borisova O.K., Gurtovaya Ye.Ye., Zelikson E.M. (1991) Climatic rhythm of the last interglacial in Northern Eurasia. Quat. Int. 10–12. Р. 191–213. doi: 10.1016/1040-6182(91)90052-P
55. Velichko A.A., Faustova M.A., Pisareva V.V. et al. (2011) Glaciations of the East European Plain: Distribution and chronology. In: Developments in Quaternary Science. Vol. 15. Quaternary Glaciations – Extent and Chronology. A Closer Look. Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.). Elsevier: Amsterdam, The Netherlands. Р. 337–359. doi: 10.1016/B978-0-444-53447-7.00026-X
56. Warwick G.T. (1964) Dry valleys in the southern Pennines. Erdkunde. Vol. 18. Р. 116–123.
57. Zagwijn W.H. (1996) An analysis of Eemian climate in western and central Europe. Quat. Sci. Rev. Vol.15. Р. 451–469.
Review
For citations:
Panin A.V., Sidorchuk A.Yu., Borisova O.K., Belyaev V.R., Belyaev Y.R., Vlasov M.V., Eremenko E.A., Fuseina Y.N., Sheremetskaya E.D. Development of the upper reaches of erosion systems in the Russian plain in the area of the Moscow glaciation. Eroziya pochv i ruslovye processy. 2024;(1):35-58. (In Russ.) https://doi.org/10.71367/3034-4638-2024-1-1-35-58