Preview

Soil erosion and river channel processes

Advanced search

IDENTIFICATION OF LONG-TERM PATTERNS IN RAINFALL EROSIVITY UNDER A HUMID CONTINENTAL CLIMATE WITH HOT SUMMERS

https://doi.org/10.71367/3034-4638-2025-2-3-19-32

Abstract

The long-term patterns of the erosional potential of precipitation (R-factor) in the monsoon climate of Primorsky Krai are investigated using modern time series analysis methods.

This study presents an analysis of the rainfall erosivity potential (R-factor) under a humid continental climate with hot summers (Dwa in the Köppen climate classification) using Detrended Fluctuation Analysis (DFA) and Power Spectral Density (PSD) methods. The original data, covering the period from 1960 to 2022, were pre-processed by removing trends and seasonal components, which allowed for identifying the dominant role of seasonal and random fluctuations in shaping temporal variations of the R-factor. The DFA results demonstrated a high degree of linear conformity in logarithmic scale (R2 = 0.983) with a scaling parameter α ≈ 0.534, indicating weak persistence and moderate correlations typical for processes dominated by short-term episodic precipitation events. The analysis of local DFA slopes revealed a stable region at a scale of approximately 15.8 months, reflecting the influence of annual seasonal cycles and potential interannual climate oscillations, such as the Pacific Decadal Oscillation (PDO) or the Atlantic Multidecadal Oscillation (AMO). Meanwhile, PSD analysis confirmed the absence of pronounced long-term memory and fractal structure in the spectrum, consistent with DFA findings. These results emphasize the importance of a comprehensive approach to studying rainfall erosivity potential and highlight the promising application of fractal analysis methods for identifying climatic and hydrological patterns in regions with pronounced seasonality and high rainfall variability.

About the Authors

N. R. Kriuchkov
Shenzhen MSU-BIT University, Faculty of Biology; Lomonosov Moscow State University, Faculty of Biology
Russian Federation

Nikita Romanovich Kriuchkov, PhD in Biology, Lecturer; Research Fellow at the Department

Shenzhen;

Moscow



O. A. Makarov
Lomonosov Moscow State University, Faculty of Soil Science
Russian Federation

Oleg Anatolyevich Makarov, Doctor of Biological Sciences, Professor, Head of the Department of Soil Erosion and Protection

Moscow



V. V. Demidov
Lomonosov Moscow State University, Faculty of Soil Science
Russian Federation

Valery Vitalievich Demidov, Doctor of Biological Sciences, Professor of the Department of Soil Erosion and Protection

Moscow



P. S. Shulga
Lomonosov Moscow State University, Faculty of Soil Science
Russian Federation

Pavel Stanislavovich Shulga, Candidate of Agricultural
Sciences, Associate Professor of the Department of Soil Erosion and Protection

Moscow



References

1. VNIIGMI-MCD. Vserossiyskiy Nauchno-Issledovatelskiy Institut Gidrometeorologicheskoy Informatsii – Mirovoy Tsentr Dannykh. URL: http://meteo.ru/ (accessed: April 10, 2025).

2. Angulo-Martínez M., Beguería S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain) // Journal of Hydrology. 2009. Vol. 379. No. 1–2. P. 111–121. DOI: 10.1016/j.jhydrol.2009.09.051.

3. Beran, J. Statistics for Long-Memory Processes. Chapman and Hall, New York. 1994.

4. Hamed K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis // Journal of Hydrology. 2008. Vol. 349. No. 3–4. P. 350–363. DOI: 10.1016/j.jhydrol.2007.11.009.

5. Kantelhardt J.W., Koscielny-Bunde E., Rego H.H.A., Havlin S., Bunde A. Detecting long-range correlations with detrended fluctuation analysis // Physica A: Statistical Mechanics and its Applications. 2001. Vol. 295. No. 3–4. P. 441–454. DOI: 10.1016/S0378-4371(01)00144-3.

6. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 2002. 316(1-4), 87–114.

7. Kantelhardt, J.W., Rybski, D., Zschiegner, S.A., Braun, P., Koscielny-Bunde, E., Livina, V., Havlin, S., Bunde, A. Multifractality of river runoff and precipitation: Comparison of fluctuation analysis and wavelet methods. Physica A, 2006. 330(1-2), 240–245.

8. Knudsen M.F., Seidenkrantz M.S., Jacobsen B.H., Kuijpers A. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years // Nature Communications. 2011. Vol. 2. P. 178. DOI: 10.1038/ncomms1186.

9. Kononova N.K., Lupo A.R. An investigation of circulation regime variability and dangerous weather phenomena in Russia in the 21st century // IOP Conference Series: Earth and Environmental Science.2020. Vol. 606. 012023. DOI: 10.1088/1755-1315/606/1/012023

10. Koscielny-Bunde, E., Bunde, A., Havlin, S., Roman, H.E., Goldreich, Y., Schellnhuber, H.J. Indication of a universal persistence law governing atmospheric variability. Physical Review Letters, 1998. 81(3), 729–732.

11. Lal, R. Soil degradation by erosion. Land Degradation & Development, 2001. 12(6), 519–539.

12. Lovejoy S., Schertzer D. The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge: Cambridge University Press, 2013. 496 p.

13. Mandelbrot, B.B., Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Review, 1968. 10(4), 422–437.

14. Maraun D., Rust H.W., Timmer J. Tempting long-memoryon the interpretation of DFA results // Nonlinear Processes in Geophysics. 2004. Vol. 11. No. 4. P. 495–503. DOI: 10.5194/npg-11-495-2004.

15. Montgomery, D.R. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 2007. 104(33), 13268–13272.

16. Movahed M.S., Jafari G.R., Ghasemi F., Rahvar S., Tabar M.R.R. Multifractal detrended fluctuation analysis of sunspot time series // Journal of Statistical Mechanics: Theory and Experiment. 2006. P. 02003. DOI: 10.1088/1742-5468/2006/02/P02003.

17. Naipal V., Reick C., Pongratz J., Van Oost K. Improving the global applicability of the RUSLE model – adjustment of the topographical and rainfall erosivity factors // Geoscientific Model Development. 2015. Vol. 8. P. 2893–2913. DOI: 10.5194/gmd-8-2893-2015.

18. Nearing M.A., Yin S., Borrelli P., Polyakov V.O. Rainfall erosivity: An historical review // CATENA. 2017. Vol. 157. P. 357–362. DOI: 10.1016/j.catena.2017.06.004.

19. Nearing, M.A., Pruski, F.F., & O’Neal, M.R. Expected climate change impacts on soil erosion rates: a review. Journal of Soil and Water Conservation, 2004. 59(1), 43–50.

20. Newman M., Alexander M.A., Ault T.R., Cobb K.M., Deser C., Di Lorenzo E., Mantua N.J., Miller A.J., Minobe S., Nakamura H., Schneider N. The Pacific decadal oscillation, revisited // Journal of Climate. 2016. Vol. 29. No. 12. P. 4399–4427. DOI: 10.1175/JCLI-D-15-0508.1.

21. Panagos P., Ballabio C., Borrelli P., Meusburger K., Klik A., Rousseva S., Alewell C. Rainfall erosivity in Europe // Science of the Total Environment. 2015. Vol. 511. P. 801–814. DOI: 10.1016/j.scitotenv.2015.01.008.

22. Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Köppen-Geiger climate classification // Hydrology and Earth System Sciences. 2007. Vol. 11. No. 5. P. 1633–1644.

23. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L. Mosaic organization of DNA nucleotides. Physical Review E, 1994. 49(2), 1685–1689.

24. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., ... & Blair, R. Environmental and economic costs of soil erosion and conservation benefits. Science, 1995. 267(5201), 1117–1123.

25. Python Software Foundation. Python Language Reference, version 3.13.2. URL: https://www.python.org/downloads/release/python-3132/ (Дата обращения: 10.04.2025).

26. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703. USDA, Washington, DC, USA, 1997. 384 p.

27. Rust, H.W., Mestre, O., Venema, V.K.C. Fewer jumps, less memory: Homogenized temperature records and long memory. Journal of Geophysical Research: Atmospheres, 2008. 113(D19), D19110.

28. Taqqu, M.S., Teverovsky, V., Willinger, W. Estimators for long-range dependence: An empirical study. Fractals, 1995. 3(4), 785–798.

29. Trenberth K.E. The definition of El Niño // Bulletin of the American Meteorological Society. 1997. Vol. 78. No. 12. P. 2771–2777.

30. Varotsos C., Ondov J., Efstathiou M. Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland // Atmospheric Environment. 2009. Vol. 43. No. 25. P. 4015–4023. DOI: 10.1016/j.atmosenv.2009.05.001.

31. Varotsos, C.A., Efstathiou, M.N., Cracknell, A.P. On the scaling effect in global surface air temperature anomalies. Atmospheric Chemistry and Physics, 2009. 9(14), 4985–4992.

32. Wang, B., Wu, R., & Fu, X. Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? Journal of Climate, 2000. 13(9), 1517–1536.

33. Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses: A guide to conservation planning. Agriculture Handbook No. 537. USDA, Washington, DC, USA, 1978. 58 p.

34. Yin S., Xie Y., Liu B., Nearing M.A. Rainfall erosivity estimation based on rainfall data of various temporal resolutions // CATENA. 2020. Vol. 193. 104635. DOI: 10.1016/j.catena.2020.104635.

35. Zhang R., Delworth T.L. Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability // Geophysical Research Letters. 2007. Vol. 34. No. 23. L23708. DOI: 10.1029/2007GL031601.


Review

For citations:


Kriuchkov N.R., Makarov O.A., Demidov V.V., Shulga P.S. IDENTIFICATION OF LONG-TERM PATTERNS IN RAINFALL EROSIVITY UNDER A HUMID CONTINENTAL CLIMATE WITH HOT SUMMERS. Eroziya pochv i ruslovye processy. 2025;(3):19-32. (In Russ.) https://doi.org/10.71367/3034-4638-2025-2-3-19-32

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-4638 (Print)